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Abstract—To determine the correlation between surface properties and concentration polarization (CP) behaviors,
cation exchange membranes with varying fixed charge densities were prepared and characterized by using several
electrochemical analyses such as chronopotentiometry, zeta potential, and current-voltage measurements. Results
showed that CP behavior depended mainly on surface charge density. With higher surface charge density, stronger
electroconvection was observed, suggesting that an increase in the surface charge density increased the concentration
of the counter ions at the membrane surface. As such, the electric field around the membrane surface was strengthened
at a current over the limiting current density. Water splitting was also proportional to the surface charge density. This
result was consistent with the classical electric field-enhanced water splitting theory, indicating that water splitting
increased due to increases in the electric field and prepolarization of water molecules at the membrane-solution interface
of the cation-exchange membrane.
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INTRODUCTION The membrane properties contributing to the polarization phe-
nomena in ion-exchange membranes include: (i) ionic permselec-
For the past decades, much attention has been given to electtivity; (ii) surface morphology; (iii) type of fixed charge groups;
cally driven processes.{, electrodialysis, water-splitting electrodial- (iv) distribution or concentration of fixed charge groups, and; (v)
ysis, and electrodeionization) using ion-exchange membranes (IEMs)ature of membrane materiald, hydrophilicity). These parame-
for the desalination of seawater [Melnik et al., 1999; Shi and Chenters may affect the formation of electric fields around IEMs and
1983], separation of amino acids [Kang et al., 2002a; Kim and Moontesult in diverse CP behaviors. Rubinstein et al. [1988] reported that
2001; Lee et al., 2002; Minagawa et al., 1997; Montiel et al., 1998polarization behaviors are substantially different for membranes of
Sato et al., 1995], and other purposes [Kang et al., 2002b; Paleolalifferent composition, even under the identical flow conditions. The
gou et al., 1996; Shaposhnik and Kesore, 1997]. Since IEMs playimiting current densities (LCDs) for an ideally permselective homo-
an important role in these processes, the ion transport phenomeiggneous membrane were particularly lower than the expected the-
through an IEM should be understood to enhance the process abretical values. This implies that a non-conducting area exists on
ficiency. the membrane surface. The lack of conductive homogeneity on the
Concentration polarization (CP) is one of the most important phermembrane surface is expected to yield a strongly non-uniform elec-
nomena in the IEM processes. CP occurs at the interface betwedric field promoting the over-limiting current. Meanwhile, Krol et
a membrane and an electrolyte solution when current is appliedal. [1999] confirmed the existence of non-conducting areas on the
Since this phenomenon causes significant problems in electro-menmembrane surface by measuring the transition tijrie ¢hronop-
brane processes including water splitting (WS) and increase in powetentiometry. More recently, Choi et al. [2001b] suggested a meth-
er consumption, it has been studied extensively for many years [Chaid for quantitatively estimating the fraction of the conducting region
et al., 2001a; Kang et al., 2003; Krol et al., 1999; Rubinstein et al.(&) on the ion-exchange membrane surface by using the modified
1988; Simons, 1979]. It has been widely accepted that the naturBand equation. Results of the studies showed that surface hetero-
of the membrane influences CP only through permselectivity. Ingeneity is an intrinsic property of ion-exchange membranes. None-
practice, however, different membranes with the same permselectheless, the interrelationship between surface conductive-heterogeneity
tivity exhibit individual unique CP behaviors and water splitting and ion-transport phenomena in the over-limiting current region
capabiliies [Rubinstein et al., 1988]. The findings clearly indicate has not been systematically investigated yet. Furthermore, the ef-
that the membrane surface plays an important role in polarizatiorfiects of such membrane surface properties on water splitting have
phenomena. not been clearly explained.
This study aimed to investigate the role of solution-membrane
interface in concentration polarization and water spliting behav-
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membranes that can be utilized in a high current condition. For thisent completely. The membranes were thoroughly rinsed with dis-
study, sulfonated poly(arylene ether sulfone) (S-PES) cation-exchangéled water and subsequently stored in a 0.50 mof taCl solu-
membranes with varying fixed charge densities were prepared antibn for more than a day.
their electrochemical and surface properties characterized. Since Several types of commercial cation-exchange membranes were
the analysis of the anion-exchange membrane was complicated daéso characterized for reference. Neo&epid-1, CMX, and CMB
to the chemical changes in quaternary ammonium groups in thenembranes were purchased from Tokuyama Corp. (Japan). A het-
over-limiting current region that triggers violent water spilitting, this erogeneous type of cation exchange membrane listed as HQC was
study was limited only to the case of a cation-exchange membranepurchased from Hangzhou Qiangiu Chemical (China).

2. Evaluation of Membrane Properties

EXPERIMENTAL The water content, electrical resistance, ion-exchange capacity,
and apparent transport number for the counter ion were determined.
1. Preparation of S-PES Cation Exchange Membranes Chronopotentiometric and current-voltage (I-V)/current-resistance

Sulfonated poly(arylene ether sulfone) (S-PES) membranes weré-R) curves were also obtained from two-compartment cell exper-
prepared by using the direct polymerization route as shown in Figiments. Detailed experimental procedures were described in previ-
1 [Mecham et al., 2000; Wang et al., 2002]. Sulfonated 4,4-dichloro-ous studies [Choi et al., 2001a; Choi and Moon, 2001; Kang et al.,
diphenylsulfone (S-DCDPS) monomers were synthesized and sul2002a, 2003].
sequently polymerized with 4,4'-biphenol and 4,4-dichloro diphe- The zeta potential values of membrane surface were determined
nylsulfone (DCDPS) monomers. All reagents were purchased fronthrough electrophoretic mobility measurements with an electrophore-
Aldrich Chemical Company. The polymerization solmhethyl- sis measurement apparatus (ELS-8000, Photal, Otsuka Electronics,
2-pyrrolidone (NMP) was distilled from phosphorous pentoxide Japan) with a plate sample cell [Shim et al., 2002]. Polystyrene latex
under a vacuum prior to use. particles (520 nm diameter; Otsuka Electronics, Japan) coated with

S-PES membranes with different degrees of sulfonation werenydroxy propyl cellulose having an average molecular weight of
made by varying the molar ratio of S-DCDPS to the total amount300,000 (Scientific Polymer Products, Japan) were used as stan-
of monomers added. Selected molar ratios (S-DCDPS/(S-DCDPS#ard monitoring particles. These were dispersed in a 0.01 rifol dm
DCDPS)) were 20, 30, 40, 50, and 60 mol%. After the synthesis ofNaCl solution to prevent interactions with or adsorption on the quartz
the sulfonated polymers, the membranes were prepared by castirgll surface during measurements. Water-splitting capabilities were
viscous 30 wit% S-PES/NMP solutions onto clean glass plates. Thdetermined by using six-compartment cell experiments [Kang et
glass plates were then placed in a vacuum oven°atf80 6 hrs, al., 2002a). The transport number of water ionsaht OH) in
with the temperature increased stepwise t6d@40r 2 hrs, 220C the membrane was calculated from the change in pH according to:

for another 2 hrs, and 300 for an hour to remove residual sol-
_FV(AC,/AY) _,  _FV(AG,,/At)
=B /B o = on/ 2

fr IA 1A ’ @
o}
m C|_©_g_®_c, where V is the volume of the solution, F the Faraday constag, C
g the concentration of proton/hyroxyl ion, t the time, | the current den-
4ok HOOH sity, and A the membrane area.
o SO;3Na
Il RESULTS AND DISCUSSION
n ¢l ﬁ—@u
NaOsS ° K,CO; 1. Effects of Membrane Surface Properties on Concentration
Polarization (CP)
NMP/toluene Chronopotentiometry is an effective tool for investigating mass
transfer at the membrane-solution interface [Choi et al., 2001b; Krol
160 °C Reflux 4 h et al., 1999]. In this study, the fraction of the conducting regjion
for each ion-exchange membrane was determined by using the mod-
190°C 18 h ified Sand equation proposed by Choi et al. [2001b]:
2 C;Os“a ? 2Tt "
% >‘ﬁ n/@_ﬁ ‘< > )n?oh‘ " CzF (D)
NaO,S © © whereg, is the fraction of conducting region, i the current density,
) ) ) T the transition time, the concentration of electrolytg, the va-
Film casting & Curing lence of k ion, F the Faraday constant, and D the diffusion coeffi-
. cient of electrolytet, , fre the transport numbers of k ion in the
RT/12h,100°C/3 h membrane and solution phases, respectively. Fig. 2 shows the chro-
nopotentiometric curves for each membrane at a constant current
200°C/2h, 310°C/1 h density (25.0 A ). The transition timetj was determined by us-
Fig. 1. Polymerization scheme for sulfonated poly(arylene ether ing the intersection of the tangents with the first and second stages
sulfone) (S-PES). of the curve. For the calculation of thevalues, the diffusion coef-
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4.0 Table 2. Zeta potentials of the S-PES membranes (in 0.010 mol
dm= NaCl/ electrophoretic measurement)
351 Membranes 20% 30% 40% 50%
S-PES S-PES S-PES S-PES
< Zeta potential (mV) -4.35 -7.16 -14.35 -17.98
5
S == 20% S-PES As expected, the values of the S-PES membranes increased with
20 1 T TS an increase in the number of sulfonic acid groups. Results showed
——n - 50% S-PES that as the fixed charge density increased, conductive homogeneity
— — —  CMX (Tokuyama Corp.)
151 was also enhanced.
Transition fime, = 0,025 mol dm- NaGll 25.0 A m 25 °C Table 2 lists the apparent zeta potentials on the membrane sur-
10 : - - - - o0 face. The zeta potential measurements were repeated several times
Time (s6c) to ensure reproducibility. The apparent zeta potential values nega-
Ime (sec,

tively increased according to the increase in the number of sulfonic
Fig. 2. Chronopotentiometry curves for determining the surface  acid groups, thus indicating an increase in the surface charge den-
heterogeneity of IEMs. sity. The apparent surface charge densitigsof the membrane

were also calculated from the zeta potential values by using the Gouy-
Chapman equation [Jimbo et al., 1999]:

ficient (1.61x1CF cn?sec’) of NaCl and the transport number (0.396)

of Na' ion in the solution phase were obtained from literature [Crow, g,

1994]. By incorporating the apparent transport numbers for each

membrane into Eq. (2), teevalues were calculated. where( is the zeta potential, k the Bolzmann constant, T the tem-

Table 1 lists various membrane properties including water conperaturek the reciprocal of the Debye screening lengttie rel-

tent, ion-exchange capacity (IEC), apparent transport number, ele@tive permittivity,s, the vacuum electric permittivity, z the valency

trical resistance, and fraction of surface conducting region. With arof the counter ion, and e the coulombic charge. The apparent sur-

increase in the percentage of sulfonated monomers (S-DCDPSlace charge densities measured in a 10 mmdIacl varied from

the water content and IEC of the S-PES membranes increased whited.10 to—0.42uC cn? according to the IEQ.€.,, 1.13-2.12 meq.

the electrical resistances decreased. The apparent transport nug?) of the S-PES membranes as shown in Fig. 3. The increases (in

bers were maintained at greater than 0.98 (for fdiaall samples.  negative direction) in the measured surface charge density corre-

_28&KTK . rzedn
e oM ®

Table 1. Evaluated basic membrane properties

(a) S-PES membranes

Membranes 20%S-PES 30%S-PES 40%S-PES 50%S-PES
Water content (-) 0.084 0.123 0.228 0.284
lon exchange capacity (meq./g) 1.13 1.48 1.86 2.12
Electrical resistance cnr) 7.24 1.65 0.98 0.77
Transition time[ (sec) 20.57 22.55 32.45 31.7¢9
I 11.34 11.87 14.24 14.10
Transport no. (-)* 1.152 1.118 0.998 1.000
Transport no. (-)** 0.998 0.993 0.987 0.994
Fraction of conducting regios, (-) 0.796 0.826 0.981 0.983
(b) Commercial membranes
Membranes CM-1 CMX CMB HQC
Water content (-) 0.36 0.27 0.43 0.45
lon exchange capacity (meq./g) 2.26 1.67 3.11 1.79
Electrical resistance cnr) 1.27 2.98 3.42 4.69
Transition time[ (sec) 22.31 21.31 20.0¢9 20.75
I 14.17 13.8% 13.45 13.67
Transport no. (-)* 1.001 1.015 1.034 1.024
Transport no. (-)** 0.985 0.987 0.980 0.915
Fraction of conducting regios, (-) 0.973 0.954 0.916 0.827

*measured by chronopotentiometry.
**measured by emf method.
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Table 3. Characteristic values of I-R curves (S-PES and commer-
cial membranes)

(a) S-PES membranes

Membranes 20% S-PES 30% S-PES 40% S-PES 50% S-PES
R (Q cn?) 766.9 737.0 718.4 714.6

Ry (Q cnT) 1032.5 989.4 929.5 921.1
Raa/Ryg (-) 1.346 1.343 1.294 1.289

R (%) 34.6 34.3 29.4 28.9

AR (Q cnt) 265.6 252.4 2111 206.4

LCD (A m?) 17.3 18.4 19.5 19.3

(b) Commercial membranes

Fig. 3. Apparent surface charge densities according to the ion-ex-
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Fig. 4. Current-resistance (I-R) curves of cation-exchange mem-

T
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branes.
(a) S-PES membranes; (b) Commercial membranes

sponded with the increases in &ealues suggested in Table 1.

T T

20 30 40
Current density (A m?)

(b)

CM-1
650.0
878.7
1.352

35.2
228.7

20.0

CMX

746.0
1072.6
1.438
43.8
326.6
194

Membranes

Ru (Q cn)
Rag (Q sz)
Rsrd/Rlst (')
Rix. (%)

AR (Q cn)
LCD (A m?)

CMB

730.2
1051.0
1.439
43.9
320.8
19.1

HQC
733.1
1201.0
1.638
63.8
467.9
17.0

was highest among the commercial membranes. In cases where
the membranes had excellent mechanical stremgtiCiX, CMB,

and HQC) since reinforcing materials such as poly(vinyl chloride)
(PVC) powder, might be introduced in abundance, the heterogene-
ity of the surface increased. The fractions of conducting regions in
each membrane increased in the following order; HQC<CMB<CMX
<CM-1.

Fig. 4 shows the current-resistance (I-R) relations for the cation-
exchange membranes investigated in this study. Markedly different
I-R curves representing different CP behaviors were observed for
the different membranes. Table 3 summarizes the characteristic val-
ues of the curves. The electrical resistances in the Ohmic region
under the LCDif. Ry) decreased with increase in the IEC. This
indicated that the Rstrongly depended on membrane conductiv-
ity. The difference in resistances at, under, and over the LGP (R
R, AR) and the resistance ratio,(fR,.) also indicated varying
CP behaviors [Choi et al., 2001a]. The parameters were obtained
by using graphic software(. Origir7.0, OriginLab Corp., USA).
TheAR values representing energy requirements for destroying the
diffusion boundary layer (like plateau lengtkVj in I-V curve))
decreased with an increase in the fraction of surface conducting re-
gion and the ion exchange capacity. ThgHR, values also showed
the same trends, indicating that increasing the fixed charge density
on the membrane surface strengthened the electro-convective force
in the over-limiting current region [Choi et al., 2001a].

Electroconvection has been understood as a phenomenon trig-
gered by a strongly non-uniform electric field resulting from a lack
in conductive homogeneity on a membrane surface over the LCD
[Krol et al., 1999; Rubinstein, 1991; Rubinstein et al., 1997]. The
non-uniform electric field may be induced by the existence of non-
conducting regions on the membrane surface or microscopic non-
uniform distributions of the fixed charge groups. According to the
theory, the lack of surface homogeneity formed by the existence of

The specific membrane properties of the selected commerciahon-conducting areas may help induce electroconvection [Krol et

membranes are also reported in Table 1(b).£Tkelue for CM-1

January, 2004
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also strengthens the intensity of electrical field around the ion-exet al., 1998]. The reaction rates of the different comporients,
change membranes. Therefore, the electroconvection effect seemrotons, hydroxyl ions, water ion pairs, and water molecules, are:
ingly becomes more violent as thevalues increase. The electric 4c
field in the water splitting layer can be estimated by using Poisson’s d_tH =keCyq:, Tk-2C,:Copy )
equation [Simons, 1984]:

dC

d_E :L (4) d?Hr :kZCHzO;,a,, _k’ZCH‘COH' (8)
dx &¢€'
where E is the electric field intensity (V1 x the distanceg the d(;_.;o =k-1C,;,, “KiCro )
space charge densitythe relative permittivity, aned, the vacuum
electric permittivity. Assuming that the space charge density is ap- dC,....
P v 9 P 9 yisap- o oy o K-Cpper., K -:C, Copy ~KeiCpr (10)

proximately equal to the fixed charge density)(the electric field dt

can be expressed by: Assuming the kO, formation rate is equal to the removal rate,

E(x) =E(9) +£_[;N’dx, ©) Eq. (10) can be rewritten as:

KiCio +k2C,yCopy =K1C,y g, +KeChhr, =(Katko)Cl  (10)
whered denotes the thickness of the space charge layer. Thereforq.,
the surface charge density is clearly one of the most dominant fac-
tors affecting CP behavior. Moreover, increases in the measured _KiCho tk-,C,Cy\
LCD values corresponded with increases insthalues. The su- HOpar k_ *k, ’
Eg\l;f\/lgfl!sbé?ﬁ(\:/izlluféli ein(iall?:aetg tf;?ﬁjcl)rtg :g:i%i:jé%g%ﬁ;e%yﬁ the recombination rate of proton and hydroxyl ions is negligible

. : o under a strong electric field, the generation rates of these ions are
regions exist on the membrane surface [Rubinstein et al., 1997]. . . )
2. Effects of Membrane Surface Properties on Water Split- simply described as:

herefore, the concentration of water ion pairs can be obtained by:

12

ting (WS) dC; _dCh _ . _KikCuo+kek ,C, . Coy 3
Water splitting takes place at the interface between the ion-ex- dt dt 7 HOm k_1tk, '
change membrane surface and electrolyte solution under the over- c.=Cc_=C
=C,, =C. (14)

LCD condition. To explain the water-splitting mechanism in an ion-

exchange membrane, the electric field-enhanced water splitting ankikewise, as Simons [Simons, 1979] suggested, the chemical trans-

catalytic proton transfer reactions were employed [Jialin et al., 1998formation is so fast that the diffusion-controlled process becomes

Ramirez et al., 1992; Simons, 1979; Strathmann et al., 1997]. Whethe rate-determining step such thekk ,. Therefore, Eq. (13) gives:

the applied electric field is high enough, Ohm's law is no longer dC _kik, Koy oo

valid. The conductance of electrolytes also increases rapidly with =~ =CCH20 +k—1(C) : 15

the field [Simons, 1979; Onsager, 1934]. When weak electrolyte

solutions are used, this phenomenon is known as the Second Wigtbsequently, Eq. (15) can be integrated as:

Effect (SWE). The following equations show the simple kinetic mod- KC K G kK

-, . .. s — [KiCpor T1/K1CpoKoK -2 [

el for water splitting at the cation-exchange membrane containing € Jk—,tanﬂlk—, k0 (16)

sulfonic acid groups as the functional group. The whole reaction ’ ’ '

can be described as follows [Kemperman (Ed), 2000; Simons, 1979} Ea. (16), as discussed earlier, the electric field around the mem-
brane surface can affect the rate constamtdording to the SWE.

HO< > H'-"OHs> H+OH’ ®)
5.00e-10
H.O<> HOj,, Step (1) ®
ke 4.00e-10 - @ 20% S-PES o
H,0, <> H+OH Step (2) o onepes P
& 50% S-PES ‘ A0 =

where HO,, refers to the intermediate (ion pair) for water split- »00e10

ting reaction. The formation of an intermediate is tantamount to the
polarization of water molecules at the membrane-solution interface
The forward reaction rate of step (2) is only affected by the inten-
sity of the field [Jialin et al., 1998; Kemperman (Ed), 2000; Simons,
1979]. On the other hand, step (1) is almost completely electrically
neutral. Therefore, the water prepolarization step (step (1)) is be © 00 &, | | | | | | | |
lieved to depend on the membrane surface characteristics (in pa 0 200 400 600 800 1000 1200 1400 1600 1800 2000

2.00e-10 A

1.00e-10

Cumulative amount of generated proton (mol)

500 A m*/ 0.025 mol dm™ Na,SO,/ 25 °C

ticular, the fixed charge density). On the other hand, the differen Time (sec)
water-splitting capabilities of cation exchange membranes can be eig. 5. Cumulative concentrations of generated protons according
plained through their varying water prepolarizing tendencies [Jialin to time.

Korean J. Chem. Eng.(Vol. 21, No. 1)
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Therefore, the differences in water splitting by different cation-ex-  Apparently, a bipolar structure (like the electrical double layer in
change membranes are mainly due to differences in the prepolaihe Helmholtz model) was instantly formed at the membrane-solu-
ization effect of water molecules and intensity of the electric field tion interface (Fig. 6). As a result, an electrostatic interaction possi-
at the solution-membrane interface. bly occurs between the fixed ion-exchangeable groups and their
Fig. 5 shows variations in the cumulative concentrations of thehydrated counter ions in the repulsion zone [Patel and Lang, 1977].
protons generated as measured in six-compartment cell experiments. addition, water molecules can be polarized in between with the
In this figure, the dotted line was obtained from Eq. (16) by plug-help of the electric field. However, the bipolar structure may be im-
ging typical values obtained from the reference [Simons, 1984]. Notenediately eliminated due to the electromigration of counter ions
that the calculated results were obtained by varying only the conthrough the membrane. Therefore, the unstable electric fields are
stant k. As Simons pointed out, the calculation fits well with the ex- generated on the interface between the membrane surface and counter
perimental data when the ratig(k ,+k,) was less than 1JSimons, ions, thereby promoting electroconvection. This may explain the
1979]. The cumulative concentration of hydroxyl ions shows angeneration of over-limiting currents and why water splitting in the
approximately linear production in the experimental condition spec-cation-exchange membraime.{ non-fouled membrane) was weaker
ified, while different slopes were observed for the different mem-than that in the membrane with an immobilized bipolar interface
branes. The increasing order of water splitting was 20% S-PES<30%e.g, cation-exchange membranes fouled with metal hydroxides).
S-PES<40% S-PES<50% S-PES. This sequence corresponds 3o Effects of Electrolyte Concentration on CP and WS
those of the fractions of the conducting region and apparent surface Fig. 7 shows the |-V and I-R relations measured in NaCl solu-
charge densities shown in Table 1 and Fig. 3, respectively. Theretions with various ionic concentrations. As the concentration in-
fore, this difference in the water splitting capabilities was seem-creased, the LCDs also increased according to the classical CP the-
ingly mainly due to their different surface charge densities. ory. Table 4 lists the characteristic values of the I-R curveARhe
Results of the I-R and chronopotentiometric curves show thatand R/R, values of I-R curves decreased with an increase in the
with higher fixed charge densities afid/alues, a more significant

electric field was induced. Thus, the prepolarization of water mole- 60
cules in the membrane-solution interface seems to be enhanced w y
an increase in the fixed charge density. Meanwhile, stronger elec 50
tric field can promote more violent water splitting by means of the
SWE. E 401 -
2 e
ko =
. 5 307
te SOlULION PhaSE =p  Membrane phase b y
5 204 S -
(@ @ &} e
P — ol v,
. o L /._f cee 0,025 M NaCl
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. 7. Current-voltage (I-V) and current-resistance (I-R) curves
of CMX membrane contacting with NaCl solution of vari-
Fig. 6. Schematic drawing of prepolarization of water molecules ous concentrations.
on the membrane surface. (a) Current-voltage curves; (b) Current-resistance curves
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Table 4. Characteristic values of I-R curves (CMX membrane)

Electrolyte (NaCl) concentration 0.010 M 0.025M 0.035 M

mol™), and T the temperature (K). Eg. (21) shows that the constant
K increases with an increase in the concentration and charge of ionic

R (Q cnt) 1646.1 6725 478.2 speciesi.e, increase in the ionic strengﬂ{=%Z(C,z,2)). The in-
Raq (Q cn) 22564 9234 6444 crease in the constaktresults in the decrease in Debye length r
Rau/Rist () 1371 1.373 1.347 (=1/k) and increase in the electrical dengitsccording to [Crow,
R (%) 37.1 37.3 34.7 1994]:

AR (Q cnt) 610.4 250.9 166.2

LCD (A m?) 6.7 19.9 313 P==KEE, (22)

where® is the electrostatic potential (V). As a result, the electric
field could become stronger in the solution-membrane interface.
ionic concentration. Therefore, the electroconvective effects could be generated more
Several researchers have studied the effects of the electrolytegolently. The width of the plateau regiak in Fig. 7(a)] in the I-
on CP behavior [Choi et al., 2001a; Rubinstein and Maletzki, 1991]V curve decreased with an increase in the constenEq. (21),
The contribution of convection to transport relative to diffusion is as shown in Fig. 8. This could explain the difference in the concen-
commonly characterized by the Péclet number Pe [Rubinstein, 1991ration polarization and water splitting behaviors of ion-exchange
Rubinstein and Maletzki, 1991], which is given by: membranes coming into contact with an electrolyte of different con-
centrations.
Pe=61rdixY), (0 The relationship between the electrolyte concentration and water
where d is the Stokes radius whiland  are the average interi-  splitting property is also presented in Fig. 9. The transport numbers
onic distance and Debye length, respectively, which are defined asf the hydroxyl ion were observed to increase with an increase in

follows: the constank. As discussed earlier, this increase is related to the
A=L(NG)* (18)
V2 0.80
T (19
2F(1C,)
CN
From Egs. (17)-(19), 0701 S~
S ~
>
Pe= Ef_dD (20) Z - ~
20 p £ ~
g 0.60 o > -
where N is Avogadro's number, @e electrolyte concentration, T )
&=&¢) the dielectric constant, R the gas constant, T the tempere &
ture, and F the Faraday constant. From Eq. (20), Pe is clearly ir & o0 1
dependent of the concentration but dependent on the Stokes radit
Pe is proportional to the ionic radius. The plateau length can be ex
pected to decrease with an increase in the Stokes radius of the ic .40 : : ! | ! |
3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50

Therefore, the electrolyte solution containing a larger Stokes radiu:
may have a shorter plateau length [Choi et al., 2001a]. According
to Einstein’s relation, the Stokes radius of an ion is proportional toFig. 8. Variation in plateau lengths V) of CMX membrane ac-
the reciprocal of the diffusion coefficient. Thus, the voltage above cording to the constantk.

saturation at which instability commendess, the width of the pla-

teau, depends on the diffusion coefficient of the transported ion .
However, this analysis cannot sufficiently explain the difference of

the plateau length in the I-V (or I-R) curves measured in different-
ionic concentrations for the same ion. As the bulk concentratior2
increases, the concentration of ions on the membrane surface aI g
increases. The constarin the Debye-Hickel equation is expressed £
as [Crow, 1994]:

@ZNZD DeN

= SsoskTD DEERTZC' e

Constant/ k (x10%, m™)

1.0e-11
CM-1 (Tokuyama Corp.)/ 6-compartment cell/ 500 A m” (CC operation)/ 25 °C

1.0e-6 - 0O o I 1.0e-12

cah)

Hydroxyl ion generation rate (mol sec™)

Transport number of
Q

where e is the electronic charge (1.602%%0s), N Avogadro’s 1067 . , , , , . 10643
number (6.023xmol™?, N=NC), z the valence of species i, C 30 35 40 45 50 55 60 65

the concentration of species | (moldng, the permittivity of the Constant  (x10°, m")

vacuum (8.85x1% C* J* m'™), & the relative permittivity (78.54),

k the Bolzmann constant (k=R/N), R the gas constant (8.314 J K

Fig. 9. Variation in water splitting performance of CMX mem-
brane according to the constank.

Korean J. Chem. Eng.(Vol. 21, No. 1)



228 M-.S. Kang et al.

enhancement of electric field and prepolarization of the water molKang, M.-S., Choi, Y.-J., Choi, I.-J., Yoon, T.-H. and Moon, S.-H., “Elec-
ecules through an increase in the density of ionic species coming trochemical Characterization of Sulfonated Poly(arylene ether Sul-
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2072), 157 (2002a).
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